

Единый государственный экзамен по МАТЕМАТИКЕ Тренировочный вариант №51

Профильный уровень Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются по приведенному ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов \mathbb{N} 1.

КИМ Ответ: <u>-0,8</u>_.

10-0,8

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

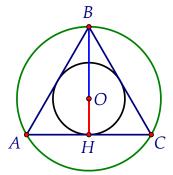
После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов N1 и N2 был записан под правильным номером.

Желаем успеха!

Справочные материалы

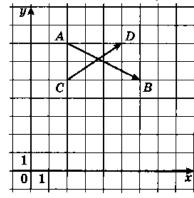
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

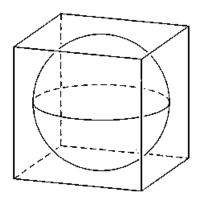

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

Часть 1


Ответом к заданиям 1-12 является целое число или конечная десятичная дробь. Во всех заданиях числа предполагаются действительные, если отдельно не указано иное. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

1. Найдите радиус окружности, описанной около равностороннего треугольника, если радиус окружности, вписанной в этот треугольник равен 12.



Ompore	
Ответ:	

2. Даны векторы \overrightarrow{AB} и \overrightarrow{CD} . Найдите длину вектора $\overrightarrow{AB} + \overrightarrow{CD}$.

3. Объем прямоугольного параллелепипеда, описанного около сферы, равен 216. Найдите радиус сферы.

Ответ: ______.

4. В сборнике билетов по биологии всего 25 билетов, в 12 из них встречается вопрос по теме «Круглые черви». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопрос по теме «Круглые черви».

Ответ: ______.

5. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,4 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,7?

Ответ: .

6. Решите уравнение $\log_{4x-2} 625 = 4$.

Ответ: ______.

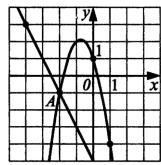
7. Найдите значение выражения $\frac{6\cos^2 34^0 - 3}{\cos 169^0 \cdot \cos 79^0}$.

Ответ: ______.

8. Материальная точка движется прямолинейно по закону $x(t) = t^3 - 9t^2 + 2t + 30$ (где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения). В какой момент времени ее скорость была равна 50 м/с?

Ответ: ______.

9. Расстояние от линзы до предмета d_I и расстояние от линзы до изображения d_2 связаны соотношением $\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$, где f – главное фокусное расстояние линзы. Найдите f, если известно, что при расстоянии от линзы до предмета, равном 30 см, расстояние от линзы до изображения этого предмета равно 20 см. Ответ дайте в сантиметрах.


Ответ: ______.

10. Теплоход, скорость которого в неподвижной воде равна 17 км/ч, прошел по течению реки и после стоянки вернулся в исходный пункт. Скорость течения равна 3 км/ч, стоянка длилась 7 часов, а в исходный пункт теплоход вернулся через 41 час после отплытия из него. Сколько километров прошёл теплоход за весь рейс?

Ответ: _____

Единый государственный экзамен, 2024 г. Математика, 11 класс

11. На рисунке изображены графики функций $f(x) = ax^2 + bx + c$ и g(x) = kx + d, которые пересекаются в точках A и B. Найдите ординату точки B.

12. Найдите точку минимума	функции	$v = (3x^2 -$	-36x+63	$(3) \cdot e^{x-3}$
	Ψ) (2.11		,

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы.

Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания

Часть 2

Для записи решений и ответов на задания 13–19 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер выполняемого задания (13, 14 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

13. a) Решите уравнение
$$\sin\left(\frac{\pi}{3} + x\right) - \cos\left(\frac{\pi}{6} + x\right) = -\frac{\sqrt{2}}{2}$$

б) Найдите все корни уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

Тренировочный вариант №51

- **14.** Точка К удалена от каждой из вершин квадрата ABCD на расстояние, равное 10, а от плоскости квадрата на расстояние, равное 8
- а) Докажите, что плоскость АКС перпендикулярна отрезку BD.
- б) Найдите расстояние от точки D до плоскости АКС.
- **15.** Решите неравенство: $\log_2 x \cdot \log_5 x + 2\log_2 x + 5\log_5 x \ge -10$
- **16.** В июле 2025 года планируется взять кредит на десять лет в размере 750 тыс. рублей. Условия его возврата таковы:
- каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо оплатить одним платежом часть долга;
- в июле 2026, 2027, 2028, 2029, 2030 годов долг должен быть на какуюто одну и ту же величину меньше долга на июль предыдущего года;
- в июле 2031, 2032, 2033, 2034, 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2035 года долг должен быть выплачен полностью.

Известно, что сумма всех платежей после полного погашения кредита будет равна 1350 тыс. рублей.

Сколько рублей составит платеж в 2035 году?

- **17**. На сторонах AB и AC треугольника ABC отмечены точки C_1 и B_1 соответственно. Оказалось, что $BC = B_1C = BC_1$.
- а) Докажите, что точки B, C и середины отрезков BB_1 и CC_1 лежат на одной окружности.
- б) Найдите косинус угла между прямыми BB_1 и CC_1 , если BC = 7, AB = 24, AC = 25.

18. Найдите все значения параметра а, при каждом из которых система уравнений

$$\begin{cases} (xy-2x-4)(2y-x-2) = 0, \\ y = a - 4x \end{cases}$$

имеет ровно 2 решения.

- **19**. Дана правильная дробь $\frac{a}{b}$. За один ход можно увеличить ее числитель на знаменатель, а знаменатель на сумму числителя и знаменателя, то есть получить дробь $\frac{a+b}{a+2b}$.
- а) Можно ли из дроби $\frac{1}{4}$ за несколько ходов получить дробь $\frac{37}{60}$?
- б) Можно ли из некоторой правильной несократимой дроби за 2 хода получить дробь, равную $\frac{8}{9}$?
- в) Найдите наименьшее значение правильной несократимой дроби, большей $\frac{11}{18}$, которую нельзя получить из другой правильной несократимой дроби за 2 хода.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.